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Abstract 

It is shown that, unless the atomic position parameters in a 
crystal are completely determined by symmetry, the position 
parameters corresponding to the minimum of the potential in 
the thermally strained lattice differ from those corresponding 
to thermodynamic equilibrium. By appropriate refinement of 
X-ray or neutron diffraction data, it is possible to obtain both 
sets of position parameters as well as the linear and 
higher-order coefficients of one-particle potentials expanded 
about the equilibrium positions. 

In the conventional analysis of crystal structure factors 
obtained from elastic X-ray or neutron scattering data, the 
time-averaged distribution of scattering material is represen- 
ted as a superposition of independent atom-like distributions 
referred to certain nuclear positions. There appears to be 
some confusion in the literature as to what these positions 
represent. They are frequently assumed to be the thermo- 
dynamic equilibrium positions, r~f)(T), of the Jth atom 
(where J = lx refers to the xth atom in the lth unit cell) at the 
temperature of measurement, T (see, for example, Born, 
1942-3). 

For a finite system, the thermodynamic equilibrium 
positions, r (e) (T), are defined (see, for example, Liebfried & 
Ludwig, 1961) as the values of r s which minimize the 
Helmholtz energy, A, viz 

OA({r,};T) 
= 0 for all J, a, (1) 

~rs~ 
where rs, , is the ath Cartesian component of r s. It may be 
shown (e.g. Liebfried & Ludwig, 1961, p. 316) that the r~s e) 
determined by (1) are in fact the ensemble-averaged positions 
of the atoms, i.e. 

r~f ) = (rs) = tr (rsp)/tr(p), (2) 

where p is the appropriate statistical mechanical density 
operator. By the ergodic hypothesis, one may also assume 
the (rs) to equal the time-averaged position of the Jth atom 
in the unit cell. 
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For a crystal with s atoms in the unit cell, the conditions 
(1) may be written in equivalent form as 

OA({r~};g,T) 
= 0 for •= 1 . . . . .  ( s -  1) and alla, (3a) 

Or ~a 

together with the condition 

OA(tr~};g,T) 
= 0 for all a, fl, (3b) 

Og~ 

which determines the unit cell of the thermally strained lattice 
with metrical coefficients g,~ = a s. a~. For a general strain a 
maximum of six components of g must be considered (see 
Freese & D6ring, 1979; Segmiiller, 1964). 

The equilibrium or time-averaged positions, r~e)(T), are, in 
general, different from the corresponding positions, r~m)(T), 
defining the minimum potential energy configuration in the 
thermally strained lattice, viz the solutions for {r~ } such that 

0O({r~ };g) 
= 0, for x = 1 . . . . .  (s - 1) and all a, (4) 

Or~a 

where q~({r~};g) is the potential energy of the strained 
crystal. 

That r~f) and r~ "° need not necessarily be equal may be 
inferred from the standard statistical mechanical relation 

A({r~};g,T) = q~({r~};g) + Uv({r~};g,T)-- TS({r~};g,T), (5) 

where S is the vibrational entropy of the crystal and 
U, ({r~} ;g,T) is the vibrational energy which, in general, does 
not go to zero at 0 K. However, r~l necessarily equals r~ m) 
when atoms are on sites for which the position parameters 
are completely determined by symmetry (type I sites), 
because then the condition 

= = 0 (6) 

is enforced by symmetry (see Liebfried & Lud~g,  1961), and 
el' = r~s m). For all other sites (type II), r~f ) ¢ rJ m) in general, 
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and it transpires that such sites necessarily belong to one of 
10 point-group symmetries, namely: 

1, m, 2, mm2, 3, 3m, 4, 4mm, 6, 6mm. 

They are the syrn~metries listed by Stewart (1976) as 
possessing non-vanishing atomic dipole components. That 
these are the only point groups possessed by type II sites 
may be verified by inspection of International Tables for 
X-ray Crystallography (1952), or by arguments used by Lax 
(1974) to define the crystal classes which can exhibit 
ferro-electricity. 

To understand which positions one obtains from an 
analysis of X-ray or neutron diffraction data, it is helpful to 
write the Debye-Waller factor (DWF) in terms of the 
potential energy q~. We begin by making a Taylor expansion 
of q~ about the r~f)(T) (Born & Huang, 1954), viz 

• ({u/) = ~o + Z • u,o + ½ y 

s,,s,, \ ~  ~ }usou.,~us,,. + . . . .  

a~ v 

(7) 

where u s = r s - r~fl are small nuclear displacements from the 
reference positions, r~s e) (see Fig. 1). The full anharmonic 
DWF for the Jth atom in this coordinate system is then 

e-~t, = ( e i k ' u j )  

= tr(e-P*(I.I)e,~,.uO/tr e-Pa'(l"l), (8) 

where fl = 1/(k B T), with k n the Boltzmann constant and k 
the scattering vector. 

r~ m~ (T) 

(T) 

O 

Fig. 1. Vector diagram illustrating r~ e), r~ m) and displacements u s, uJ 
for atom J. 

By a shift Ar s = r~s e) - r~s m~ in the reference position, (7) can 
be re-written as an expansion about the r~s m~, viz 

q~'({u'}) = ~ + ½ ~ qg'[ JJ' ) 

/Js's"~ 
+~ Z q~' l ) ' ' ' + (9) ss's" aft y usa us'~ us''v "'" 

a[J v 

where u S = r s - r~s m) = u s + Ar s. Unlike (7), (9) has no 
linear term in the displacements. The original coefficients 

• . . .  

may be expressed in terms of the new coefficients 

as polynomials in Ars~. Substitution of (9) in (8) gives the 
DWF as 

e-M, = e-,~.,~,, tr[e-p~(l.' I) e ik'"i']/tr e -~ ' (1"  }) (10) 

Examination of (7) to (10) shows that it is not possible to 
refine simultaneously both for the effect of the linear 

coefficient q~ { J ) i n  the DWF and for the equilibrium 

position, since one can always apply the transformation 
leading from (7) to (9) and hence reduce the number of 
parameters (el Whiteley, Moss & Barnea, 1978, where the 
number of parameters considered for a wurtzite structure 
could have been reduced by two). It follows that a refinement 
using a full anharmonic DWF (assuming exact knowledge of 
the atomic scattering factor) leads to positions r~ m) defining 
the minimum of the full many-body potential for the 
thermally strained lattice. 

If, on the other hand, the DWF is omitted in a refinement 
of the data, the phase factor e -ik'Ar~ does not occur and one 
might expect the refined positions to approximate closely the 
equilibrium or mean positions, rtse), of the atoms. (The same 
effect would be obtained if the terms odd in the displace- 
ments were omitted from the DWF.) 

Because the DWF cannot reveal information on corre- 
lations between the motions of the various atoms, it is not 
possible to obtain separately the coefficients of the full many- 
body potential; however (see, for example, Dawson, Hurley 
& Maslen, 1967; Mair, 1980), the individual coefficients of 
effective one-particle potentials (OPP's) may be obtained 

To relate these coefficients to those of corresponding OPP's 
expanded about the equilibrium positions 

~ ar J 

the only additional information required is the Ar s, which 
may be obtained by calculating ~e) from the ~ l ,P  co- 
efficients using (2). 



266 S H O R T  C O M M U N I C A T I O N S  

The magnitude of the Arj for a particular system will 
depend on the anharmonicity present and on the symmetry 
at the atomic sites concerned. For example, in CdS, which 
has the rather highly symmetric wurtzite structure, the sum 
of the Ar i for adjacent Cd and S atoms, as measured by the 
change in the structural parameter for the equilibrium and 
minimum energy configurations, is 0 .0019A at room 
temperature (Barnea & Stevenson, 1980). This represents a 
significant change in the structural parameter, of magnitude 
three times its standard deviation. In a less highly symmetric 
system undergoing large thermal vibrations the Ar i will be 
correspondingly higher. 

An important consequence of the measurability of r) ~ for 
ionic crystals is that a series of measurements as a function 
of temperature will provide the temperature-dependence of 
the rigid-ion contribution to the primary pyro-electric 
coefficient, pt~ (see, for example, Mair & Barnea, 1975), 
which is given by 

1 

t ¢ = l  

Here q~ is the charge associated with the s:th ion (assumed to 
be independent of T), V is the volume of the unit cell, and p ~  
is the secondary pyro-electric coefficient, which can be 
calculated from thermal expansion data. 

We conclude that, if the full Debye-Waller factor is used, 
the reference positions obtained from an X-ray or neutron 
diffraction analysis are the positions r~ m) defining the 
minimum of the potential energy in the deformed lattice. If 
no Debye-Waller factor, or a conventional harmonic 
Debye-Waller factor, is used, one might expect the positions 
obtained to correspond closely to the equilibrium or mean 
positions of the atoms, (D) = r{d e~" For sites fully determined 
by symmetry, we have the further condition that rJ m~ = r~ e). 

If a refinement with the full Debye-Waller factor is made, 

both r~ m) and r~ e~ can be obtained, and the linear and 
higher-order coefficients of the one-particle potentials, 
expanded about the equilibrium positions, may then be 
deduced. If the crystal is ionic, measurements of r~ m~ and r~ e) 
against temperature enable one to obtain the pyro-electric 
coefficient in the rigid-ion approximation. 

We are grateful to Drs A. Hurley, V. Maslen and J. 
Tibballs for helpful comments, and to Drs Z. Barnea and A. 
Stevenson for their results on CdS before publication. 

References 

BARNEA, Z. c~. STEVENSON, A. (1980). Private 
communication. 

BORN, M. (1942-3). Rep. Prog. Phys. 9, 294-333. 
BORN, M. & HUANG, K. (1954). Dynamical Theory of 

Crystal Lattices, p. 302. Oxford: Clarendon Press. 
DAWSON, B., HURLEY, A. C. & MASLEN, V. W. (1967). 

Proc. R. Soc. London Ser. A, 298, 289-306. 
FREESE, H. & DORING, W. (1979). Z. Phys. B34, 135-140. 
International Tables for X-ray Crystallography (1952). Vol. 

1. Birmingham: Kynoch Press. 
LAX, M. (1974). Symmetry Principles in Solid State and 

Molecular Physics, p. 113. New York: Wiley. 
LIEBERIED, S. & LUDWIG, W. (1961). Solid State Physics, 

Vol. 12, edited by F. SEITZ & D. TURNBULL. New York: 
Academic Press. 

MAIR, S. L. (1980). J. Phys. C, 13, 1419-1425, 2857-2868. 
MAIR, S. L. & BARNEA, Z. (1975). Acta Cryst. A31, 

201-207. 
SEGMOLLER, A. (1964). Phys. Kondens. Mater. 3, 18-28. 
STEWART, R. F. (1976). Acta Cryst. A32, 565-574. 
WHITELEY, B., Moss, G. & BARNEA, Z. (1978). Acta Cryst. 

A34, 130-136. 

Acta Cryst. (1981). A37, 266 

A new structural principle in anion-excess  fluorite-related superlattices: erratum. By D. J. M. BEVAN, School 
of Physical Sciences, Flinders University, Bedford Park, South ,4 ustralia 5042, O. GREIS, Mineralogisch-Petrographisches 
lnstitut der Universitdt, D-6900 Heidelberg, Federal Republic of Germany and J. STRXHLE, Institut fffr Anorganische 
Chemic der Universitdt, D-7400 Tffbingen, Federal Republic of Germany 

(Received 16 December 1980) 

Abstract 

Fig. 1 of Bevan, Greis & Str[ihle [Acta Cryst. (1980), A36, All information is given in the Abstract. 
889-890] has been printed upside-down. The legend is 
correct. 
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